A New Approach for the Pattern Recognition and Classification of Ecg Signal
نویسندگان
چکیده
Electrocardiogram (ECG) reflects activity of the central of the blood circulatory system, i.e. the heart. An ECG signal can provide us with a great deal of information on the normal and pathological physiology of heart activity. Thus, ECG is an important non-invasive clinical tool for the diagnosis of heart diseases. According to the medical definition the most important information in the ECG signal is concentrated in the P wave, QRS complex and T wave. These data include positions and/or magnitudes of the QRS interval, PR interval, QT interval, ST interval, PR segment, and ST segment (see Fig. 1). Based on the above data, doctors can correctly diagnose human heart diseases. Therefore, analyzing the ECG signals of cardiac arrhythmia is very important for doctors to make correct clinical diagnoses. In order to perform ECG signals classification of the cardiac arrhythmia, the first important task is to determine an appropriate set of features. The feature selection method which chooses the best features from original features to have the maximum recognition rate, simplify classified computation and comprehend the causal relation of classified question. Signal Processing is undoubtedly the best real time implementation of a specific problem. Wavelet Transform is a very powerful technique for feature extraction and can be used along with neural network structures to build computationally efficient models for diagnosis of Biosignals (ECG in this case). This work utilizes the above techniques for diagnosis of an ECG signal by determining its nature as well as exploring the possibility for real-time implementation of the above model. Daubechies wavelet transform and multi-layered perceptron are the computational techniques used for the realization of the above model. The ECG signals were obtained from the MIT-BIH arrhythmia database and are used for the identification of four different types of arrhythmias. The identification was implemented real-time in SIMULINK, to simulate the detection model under test condition and verify its workability.
منابع مشابه
Classification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA Bayesian Approach for the Recognition of Control Chart Patterns
In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...
متن کاملNeuro-ANFIS Architecture for ECG Rhythm-Type Recognition Using Different QRS Geometrical-based Features
The paper addresses a new QRS complex geometrical feature extraction technique as well as its application for electrocardiogram (ECG) supervised hybrid (fusion) beat-type classification. To this end, after detection and delineation of the major events of ECG signal via a robust algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images ...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کامل